Revision 3 Equilibrium, galvanic cells and organic pathways

- 1) Consider the reaction shown below
 - $2NOCI(g) \rightarrow 2NO(g) + CI_2(g)$ ΔH is positive.

The equilibrium constant for this reaction is 1.23×10^{-4} M at a given temperature. a)

What is the equilibrium constant for the reaction below, taking place at the same

temperature as the reaction above.

$$NO(g) + \frac{1}{2}CI_2(g) \rightarrow NOCI(g)$$

$$\sqrt{\frac{1}{1.23 \times 10^{-4}}}$$

=> 90.2 M^{-1/2}

A concentration-time graph for the system b) $2NOCI(g) \rightarrow 2NO(g) + CI_2(g)$ ∆H is positive is shown on the right.

On the graph indicate the changes that take place when at - t₁ NO is added

- t₂ the pressure was decreased by increasing the volume
- t₃ a catalyst was added at constant temperature.

2) Three pieces of metal were placed in different solutions as shown on the right. Mg a) In which beaker/s will a reaction occur? Beaker I and II only Pb(NO₃)₂(aq)

b) give the overall equation to each reaction.

 $Pb^{2+}(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + Pb(s) - Beaker I$ $2AI(s) + 6H_2O(I) \rightarrow 3H_2(g) + 6OH^{-}(aq) + 2AI^{3+}(aq)$ Beaker II

c) A student set up the galvanic cell shown on the right.

i. Write the balanced overall equation to the reaction taking place.

 $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

ii. The student, however, notices that there is no measurable voltage output.

The following students offer their opinion as to why no measurable voltage is recorded.

Student 1 " The setup is not constructed with standard half cells"

Student 2 "H₂O₂ will oxidise water in preference to itself"

Student 3 " The reaction occurs too slowly "

Which one of the students is likely to be correct? Explain why and suggest why the others are not correct.

Mg(NO₃)₂(aq)

Ag

Cu.(NO3)2(aq)

beaker III

Student 3 is correct. The setup is constructed with standard half cells at 1M SLC, $25^{\circ}C$ 101.3 kPa, while H_2O_2 will not oxidise water but H_2O_2 . H_2O_2 is a stronger oxidant and reductant than water according to the E° table in the data sheet.

Four standard galvanic cells are set up as indicated below.
cell I a Br₂/B^{r-} standard half-cell connected to a Cu²⁺ /Cu standard half-cell
cell II an Sn^{2+/}Sn standard half-cell connected to a Zn²⁺ /Zn standard half-cell
cell III a Br₂/Br⁻ standard half-cell connected to an I₂/I⁻ standard half-cell
cell IV a Co²⁺ /Co standard half-cell connected to an Fe³⁺ /Fe²⁺ standard half-cell

Draw galvanic cell II in the diagram on the right. Indicate the :

- EMF

- cathode and anode
- polarity of the electrodes
- what the electrodes are made from
- direction of electron flow
- direction of positive ion flow
- The oxidation half equation $Zn(s) \rightarrow Zn^{2+}(aq) + 2e$ The reduction half equation $Sn^{2+}(aq) + 2e \rightarrow Sn(s)$
 - f) Which cell has the highest EMF? Cell IV EMF 1.05 V
- e) Explain why KNO₃ is used to form the salt bridge.

The salt used in the salt bridge must

- be soluble in water
- not react with components of either half-cell, i.e. cannot contain a strong oxidant or a strong reductant.

Also, in the cell, cations migrate towards the cathode and anions migrate towards the anode.

3) Consider the reaction pathways shown on the right.

a) Identify substance :

- A –ethanol
- B butan-2-ol
- C ethanal
- D –water
- F ethanoic acid

b) To what group of molecules does substance B belong to? *Secondary alcohol*

c) To what group of molecules does substance E belong to? *Ester*

